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Abstract 
Selective laser sintering (SLS), a powder-based additive manufacturing technology, employs micron-

sized polymer particles, which are selectively fused by a laser. SLS yields excellent part qualities with good 
mechanical properties. However, a persistent challenge in this layer-by-layer process is a reduction of 
mechanical properties in the z-direction. This is often caused by insufficient layer adhesion. One way to 
strengthen the layer adhesion in z-direction is the incorporation of glass fibers, which exceed from one 
layer into another. However, most commercially available glass-fiber enhanced materials are dry blends 
of the polymer powders and the fibers. In order to enhance the isotropic mechanical properties of parts 
manufactured via selective laser sintering, the manufacturing of glass fiber-filled PA11 particles is shown in 
this contribution. We present a single-pot approach to produce glass fiber-filled polyamide 11 (PA11) 
composite particles. The particles are manufactured via liquid-liquid phase separation and precipitation [1] 
(also known as solution-dissolution process) from ethanol glass fiber dispersions. Bulk polymer material of 
PA11 is directly converted to composite microparticles in a single process. The produced particles are 
characterized regarding their size and morphology. The amount of glass fibers in the bulk is assessed via 
thermogravimetric analysis and the effect of the fibers on the processing window is investigated via 
differential scanning calorimetry (DSC). As a proof of concept, the powder is employed in the SLS process to 
produce glass fiber-enhanced test specimens for mechanical testing. 

Introduction 
Powder-based additive manufacturing technologies, especially laser powder bed fusion (aka. selective 

laser sintering (SLS)) yields parts of high quality and stability, without the need for support structures. In this 
process, a homogeneous layer of powder is spread via doctor blade or roller onto a building platform. The 
particles in the spread powder are selectively fused with a laser, according to the cross section of the part to be 
built in this layer, before the building platform is lowered by the height one powder layer and the process is 
repeated. The process is operated at elevated temperatures, namely between the onset of melting and the onset 
of crystallization, the so called sintering window [1]. The most obvious material requirement is that the 
feedstock must be a powder. However, the requirements on the material to obtain parts of high quality are much 
more demanding. Suitable powders must be optimized with regard to their flowability and packing properties, 
particle size and shape, but also thermal and rheological properties. Therefore, the most widely and most 
successfully employed material for SLS is polyamide 12 with a market share of around 90%, while the rest is 
made up of e.g. polyamide 11, polypropylene, PEEK and others [2]. For SLS they show good intrinsic 
properties (aging behavior, sintering window, crystallization kinetics) rendering them very suitable for SLS [3]. 
To overcome some of the PA12 or PA11 specific drawbacks, like mediocre mechanical properties, it is possible 
to add fiber materials to the polymer powder, in order to obtain fiber-reinforced parts with high stiffness for 
applications like housing in automotive [4]. As fibers might reduce the flowability of a dry blended powder 
system due to their large diameter-length ratio [5], it is desirable to incorporate the fibers into the polymer 
particle. By that, process properties, like flowability as well as optical properties of the powder are hardly 

 1022

 Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper



influenced by the fillers. A comprehensive overview on advantages and challenges of fiber reinforced additive 
manufacturing is given in a recent article by Fidan et al. [6]. 
 While the commercially available polyamide 11 is produced via cryogenic grinding, the largest portion 
of the PA12 powder used in SLS is precipitated using the thermally-induced liquid-liquid phase separation 
(TIPS), or solution-dissolution, process [3,7]. This process is based in the dissolution of the polymer in a 
moderate solvent. Such a solvent dissolves the polymer only at elevated temperatures, so that upon cooling the 
homogenous solution, the solvent cannot dissolve the polymer anymore. Subsequently, during cooling, the 
system reaches a miscibility gap, where TIPS sets in, dependent on the system composition and process 
parameters. Droplets of high polymer concentration form in a matrix of high solvent concentration. 
Consequently, the polymer in the droplets crystalizes or solidifies and polymer microparticles are precipitated. 
The resulting size distribution and shape are governed, among other parameters, on the polymer-solvent pairing, 
the polymer concentration, droplet coarsening by coalescence and Ostwald ripening, stirring conditions etc. 
More information on this process can be found in [8–12].  
 In a recent publication, we investigated this process for the manufacturing of PA11 particles and 
performed a thorough particle and material characterization before applying the material in the SLS process, 
where we could show its processability [13]. The advantage of this process is the possibility to add stabilizers, 
fillers or other compounds easily during the TIPS process, which get incorporated into the particles. 
Based on this work, in this study we investigate the manufacturing of glass fiber-filled PA11 particles with a 
fiber concentration of 25 vol.%. The fiber length distribution of the employed milled glass fiber material is 
assessed via light microscopy and the particle size distribution (PSD) of the manufactured composite powder is 
investigated via laser diffraction particle sizing. The incorporation of the glass fibers into the polymer particles, 
as well as the resulting particle shape, is studied via SEM imaging. The glass content in the manufactured and 
sieved powder is determined via thermogravimetric analyses. Furthermore, the thermal properties, namely the 
sintering window, as well as a possible effect of the fiber material on the polymer crystallization, is investigated 
via DSC. Based on the performed powder characterization, appropriate laser sintering parameters for the 
manufacturing of test specimens with a desktop laser sintering device could be identified. As a proof of concept, 
thereby manufactured test specimens made from neat PA11 powder and the glass-filled PA11 composite 
powder respectively, are mechanically tested to assess the strengthening effect of the glass fibers. The resulting 
part morphology, especially the fiber distribution in the laser sintered specimens, is investigated via light 
microscopy on resin embedded cross sections. 

 
Materials 

 
 As feed material polyamide 11 granules (Rilsan BMN O natural, Arkema) were used. Ethanol (99.5 %, 
denatured with 1 % MEK, VWR) was used as a moderate solvent without further purification. The fibers used 
for filling the PA11 were milled glass fibers of the type OK-7904 FM with a nominal fiber length of 0.2 mm 
(WELA Handelsgesellschaft mbH). 
 
 

Methods 
 
Precipitation of glass fiber-filled PA11 particles 
 DAB-3 (Berghof) steel autoclaves equipped with PTFE liners placed on stirrer hotplates were used as 
reactors for particle manufacturing. A detailed description of the particle precipitation procedure can be found 
in [13]. In all reported experiments 18 g PA11 granules and 82 g ethanol were used. Furthermore, in order to 
obtain a PA11-glass fiber composite material with 25 vol.% of glass fibers, 13.5 g of glass fiber material was 
added. The autoclaves were then heated to 190 °C, where the system was held for 15 min, to ensure complete 
dissolution of the PA11, before heating was turned off. The system was then cooled to 130 °C, where an 
isothermal step was applied for 30 minutes. Stirring inside the autoclaves was realized via magnetic stirring bars 
(6mm x 25 mm) at 300 rpm. The autoclaves were opened at temperatures below 60°C and the product particles 
were collected by filtration via a Büchner funnel (Grade 1 filter, Whatman). The recovered wet particles were 
subsequently dried in an oven and sieved with a 160 μm sieve. 
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Laser diffraction particle sizing 
Particle size distributions (PSDs) of the glass fiber-filled PA11 particles were measured by laser 

diffraction using a Mastersizer 2000 equipped with a Scirocco 2000 dry dispersion unit (Malvern). The 
dispersion gas pressure was 2 bar. 

Glass fiber size analysis 
Since size measurement of fibers is not feasible via laser diffraction, the fiber lengths were measured via 

light microscopy under 10X magnification with a Morphologi G3 (Malvern). For the measurement, around 
60,000 particles are dry-dispersed and then measured optically.  

Scanning Electron Microscopy (SEM) 
Shape and surface morphology of the PA11 particles were characterized by scanning electron 

microscopy (SEM) with a GeminiSEM 500 (Carl Zeiss) operated at an acceleration voltage of 1.0 kV. A 
secondary electron detector was used for imaging.  

Differential scanning calorimetry (DSC) 
Differential scanning calorimetry (DSC) for the glass fiber-filled PA11 powders was performed using a 

DSC8000 (PerkinElmer). The samples were placed in standard aluminum pans with covers and measured at a 
heating rate of 10 K/min from 30°C to 210°C followed by cooling to 30°C at 10 K/min. Measurements were 
conducted under continuous nitrogen purge gas flow (25 mL/min). 

He-pycnometry 
Solid density was determined using the helium pycnometer AccuPyc 1330 (Micromeritics) equipped 

with a 1 cm3 sample cell. 

Thermogravimetric analysis (TGA) 
Determination of glass fiber content in the filled PA11 powders was realized by measuring the weight of 

the ash residue via TGA. Experiments were performed in synthetic air using a TGAQ50 (TA Instruments). A 
ceramic pan with a volume of 250 μl was used and the sample weight was approximately 60 mg. The 
measurement was conducted in a temperature range of 30–900 °C with a heating rate of 10 K/min. 
Measurements were conducted once with powder sample mixtures of at least 6 single powder precipitation 
samples. 

Powder bed fusion 
To investigate the processability of the manufactured glass-filled PA11 powder in the powder bed fusion 

process, five test specimens were manufactured on a SnowWhite (Sharebot). The test specimens were tensile 
specimens according to DIN EN ISO 527-2 type 5A. The device is equipped with a CO2 laser (wavelength 
10.6 μm) with a maximum nominal power of 14 W, the maximum scanning speed is 3500 mm/s and the 
distance between the laser tip and the powder bed is approx. 20 cm. No information on laser spot size and 
hatching distance is specified by the device manufacturer. The device is not flushed with nitrogen and operated 
under air atmosphere. Before and after each experiment, the lens was cleaned with dust-free tissues and absolute 
ethanol. 

Mechanical Testing 
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All tensile tests were performed on a Z050 (Zwick) tensile testing machine according to DIN EN ISO 
527-1. In accordance with the norm, the test speed was 20 mm/min, the clamping length L0 50 mm and the
preload 0.1 N for all samples, to ensure comparability.

Specimen and particle cross section inspection 
For analyzing the spatial fiber distribution, cross-sections of the particles and the test specimen are 

made. The tensile bar and the particles were embedded in epoxy and then grinded and polished. Then, the cross-
section of the middle of the tensile bar was analyzed by light microscopy (AxioImagerM2m, Zeiss) under bright 
field illumination with a magnification of 10x. The prepared particles are analyzed via SEM (Ultra Plus, Zeiss).  

Results 

To study the manufacturing of glass fiber-filled PA11 particles, it is crucial to obtain information on the 
fiber length distribution, since the used fiber material is a milled glass fiber powder. While we aim for 
incorporation of the glass fiber material into the particle matrix, only fibers smaller than the particle can be 
enclosed fully in the particle matrix. Longer fibers might protrude from the particle and even longer fibers 
might only be coated by the polymer. In Table 1, the representative number- and volume-weighted fiber length 
distribution, given as x10, x50, and x90 values, as determined via light microscopy are listed. 

Table 1: Fiber length distribution 
x10 / μm x50 / μm x90 / μm 

Number-weighted 1.87 4.45 23.88 
Volume-weighted 20.94 66.91 240.3 

It is obvious, that the milled fiber material displays a broad length distribution, with a large portion of 
very small sub 5 μm fiber fragments, which are formed during milling. The large number of small fiber 
fragments is beneficial for filling the particles, as the mean particle size obtained from the precipitation of PA11 
from ethanol employing comparable parameters is larger (c.f. 80 μm to 130 μm [13]). However, the large x90,3 

length shows, that also very long fibers must be present in the fiber material. The longest observed fiber even 
measured 571.9 μm. Such long fibers, while beneficial for macroscopic strengthening, as they extend over 
several particles or powder layers in the SLS process, can hardly be incorporated into single particles and might 
negatively influence powder flowability or spreadability and subsequently SLS processability.   
To assess the incorporation of the glass fiber material and the resulting PA11 composite particle shape and 
morphology, SEM imaging was conducted. In Figure 1, three representative images are shown. 

Figure 1: SEM images of the manufactured glass-filled PA11 powder. 

The images support the assumptions made based on the fiber lengths distribution. Particles with nearly 
enclosed or protruding fiber fragments can be identified, as well as larger fibers, which are coated with polymer. 
Also fibers with particles attached at the end are visible. While these observations proof, that our approach to 
manufacture PA11-glass fiber composite particles via TIPS is successful, they also show, that employing a 
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milled glass fiber material leads to a wide variety of particle shapes and sizes, as well as polymer-coated fibers. 
Coating of fibers with polymer via TIPS for application in SLS has previously been reported by Yang et al. 
[14], where carbon fibers were coated with PA12. They found enhanced mechanical properties due to the 
homogeneous distribution of the fibers and the strong interfacial bonding. These effects will be investigated for 
our PA11 composite powder in the following via mechanical testing and cross-section imaging of parts 
manufactured via SLS. 

However, in order to identify appropriate process parameters for SLS, the particles size distribution of 
the manufactured particles, which is linked to the applicable layer height in the CAD model and the sintering 
machine, must be known. In previous studies concerning laser sintering of PA11 particles manufactured via 
TIPS, we found the removal of a coarse fraction larger than 160 μm to be a viable method to ensure good SLS 
processability [13]. The volume-weighted particle size distribution of the PA11-glass fiber composite powder is 
depicted in Figure 2 (left). The powder exposes a mean particle size of 65.4 μm, which is well comparable to 
commercial SLS powders [3,13,15,16]. With a x10,3 of 21.2 μm and a x90,3 of 145.7 μm, the fine fraction is smaller 
and the coarse fraction larger than commercial powders (c.f. non-sieved: x10,3 = 19.8 μm, x50,3 = 66.0 μm and x90,3

= 155.4 μm). The distribution width, given as span calculated as (x90,3 - x10,3)/x50,3, is 1.9 (c.f. non-sieved: 2.1), 
indicating a rather broad distribution. However, this could be easily overcome by further removal of fine and 
coarse fraction via sieving and classification. In this study, we refrain from doing so, as the goal is a proof of 
principle of the process route to obtain glass fiber-filled PA11 composite particles, which can be employed in 
SLS, and not optimized material development.  
While the SEM images showed, that the incorporation of the glass fibers was successful, no information on the 
final glass concentration is obtained. To check, if the intended glass fiber concentration of 25 vol.%, added 
during the initial manufacturing process, is still present in the dried and sieved powder, TGA measurements 
were performed. The recorded progression of weight loss over temperature is depicted in Figure 2 (right).  

Figure 2: Particle size distributions of the manufactured sieved and non-sieved PA11-glass fiber composite 
powder (left) and progression of weight loss over temperature as obtained by TGA (right). Onset of degradation 
is 424 °C for the glass-fiber composite and 415 °C for neat PA11. 

The ash residue, which can be correlated to the weight concentration of the glass fibers, was determined to be 
42.5 wt.%. With a density, as obtained by He-pycnometry, of 2.598 g/cm3 and 1.110 g/cm3 for the glass fiber 
material and the PA11 particles [13], respectively, the volume concentration of the glass in the powder bulk is 
24.7 vol.%. This matches the intended volume concentration of 25 vol.% nearly perfect, even though the bulk 
powder obtained after the TIPS process was washed, dried and sieved. The powder yield after production and 
these post processing steps was higher than 90%, rendering the TIPS process and the subsequent post 
processing quite efficient. The TGA shows, that it is possible to tailor the glass concentration in the PA11-glass 
fiber composite powder by mere addition of the desired glass content to the initial TIPS process in a one pot 
approach. Furthermore, the glass reinforced particles exhibit a slightly higher onset of degradation, with 424 °C 
compared to 415 °C for the neat PA11. 
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Another important material characteristic, which is crucial for successful SLS processing, is the thermal 
sintering window, given as the temperature difference between the onset of melting and the onset of 
crystallization (often determined with heating and cooling rates of 10 K/min). The processing temperature in the 
building chamber should be in this window, to mitigate premature crystallization of the molten polymer after 
laser exposure. A thermogram depicting the first heating and cooling of the glass fiber-filled PA11 powder and 
the appropriate sintering window is displayed in Figure 3. 

The displayed thermogram is typical for PA11 particles obtained via TIPS, with the double -phase 
melting endotherm and a sintering window in the range of 17 °C to 19 °C [13]. The glass fiber composite 
material shows an onset of melting at 184.6 °C and an onset of crystallization at 166.3 °C, which corresponds to 
a sintering window of 18.3 K. The glass fiber material, even though its large number concentration of sub-5 μm 
fragments, does not act as a nucleating agent causing premature crystallization. Considering the thermal 
properties of the composite powder, sufficient processability can be expected, as the sintering window is large 
enough to compensate minor deviations on temperature during processing and the glass fiber material does not 
affect the crystallization negatively.  

Figure 3: Thermogram of the first heating and cooling cycle of the PA11-glass fiber composite material and 
neat PA11 material determined with a scanning rate of 10 K/min. The heat flow of the composite material has 
not been correct for the mass of glass, thus yielding lower absolute enthalpy as compared to the native PA11 
material. 

Based on the preceding powder characterization, suitable processing parameters for SLS with the 
SnowWhite desktop sintering machine can be chosen. In the slicer software, a layer height of 0.3 mm was used, 
which correlates roughly to twice the x90,3, a value often used as rule of thumb. Under consideration of the DSC 
results, the building chamber temperature, given in the device as environmental temperature, was set to 157 °C, 
which correlates to a powder bed temperature in the device of approx. 177 °C. Since the glass might absorb 
some of the laser light and our particles are larger than standard PA12 powder material, we deviate from the 
processing parameters given by the device manufacturer for sintering of PA12. In Table 2, a comparison 
between the most important processing parameters given for PA12 and our settings can be found. After a few 
test runs, sufficient sintering results could be obtained with a laser power of 4.2 W and a scanning rate of 
825 mm/s in the bulk and 550 mm/s at the part borders. Furthermore, a waiting time of 20 seconds, after laser 
illumination and before the next powder layer is deployed, was set. 
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Table 2: Comparison between the most important processing parameters given for PA12 and the settings 
employed for sintering of our PA11-glass fiber composite powder. 
Material Standard PA12 PA11-GF composite 
Temperature (environmental) / °C 138 - 143 157 
Laser power / W 2.8 4.2 
Scanning Speed / mm/s 2188 825 
Scanning Speed (border) / mm/s 2188 550 

These parameters are not optimized and the resulting part qualities are hardly comparable to industrial 
laser sintering machines. Thorough processing parameter optimization could not be realized, because due to the 
air atmosphere present in the SnowWhite device and the well-known aging of polyamide powder materials, 
virgin material was only used once for each experiment. This increased material demand had to be met with the 
present production rate of 18g polymer material per precipitation experiment. However, we were able to 
manufacture multi-layered test specimens from our produced PA11-glass fiber composite powder and could 
show its basic SLS processability.  

To assess the effect of the glass fiber material on the part properties, mechanical testing of the 
manufactured test specimens was conducted. For better comparison, also test specimens manufactured under 
identical parameters via SLS from neat PA11 powder, produced via TIPS, were investigated. The resulting 
ultimate tensile strength and elongation at break for the neat PA11 and the PA11-glass fiber composite are listed 
in Table 3.  

Table 3: Mechanical properties of the test specimens manufactured from neat PA11 and PA11-glass fiber 
composite. 
Sample (n = 5) Ultimate tensile strength / MPa Elongation at break / % 
Neat PA11 7.1 ± 0.5 5.9 ± 0.5 
PA11-glass fiber composite 21.4 ± 1.1 6.3 ± 0.2 

Even though the mechanical properties, as compared to injection molding or laser sintering with 
optimized parameters on industrial devices, are rather weak, a strong increase in ultimate tensile strength can be 
observed for the composite powder. The elongation at break was apparently not affected by the addition of glass 
fiber material. For the neat PA11 specimens, we observed a fracture behavior governed by delamination, which 
could explain the weak ultimate tensile strength and the low elongation at break. The employed processing 
parameters lead to subpar layer adhesion and thus, delamination under tensile stress. This causes the unexpected 
low elongation at break in the same range as the much more brittle glass fiber composite. For the composite 
material, the employed manufacturing parameters yield stronger parts without any observed delamination under 
stress. This could be caused by the longer fibers extending between the layers and thus, linking the layers, 
which would benefit the layer adhesion. Furthermore, glass absorbs light very well in the CO2-laser wavelength 
(10.6 μm) [17]. Since some glass fibers protrude from the polymer particle, they are directly exposed to the 
laser during illumination, which could increase the effective energy input into the powder bed. This could lead 
to better sintering and therefore overall increased layer adhesion. Due to the limited amount of material and the 
temperature-induced ageing of polyamides [18] (especially under air, as it is the case in the desktop sintering 
device), we refrained from an extended parameter study to identify optimized processing parameters. To study 
the unaged, pristine powder properties, each powder batch was only used once for laser sintering. Nevertheless, 
it can be observed, that the fibers strengthen the material, even though they are smaller than typically used fiber 
material [19,20]. Via mechanical testing, we could show the basic SLS processability of our PA11-glass fiber 
composite powder and the strengthening effect of the fibers. However, no information on the fiber orientation in 
the polymer matrix could be gained. Therefore, a small fragment of a previously tested tensile specimen was 
embedded in epoxy, grinded and polished, until a plane cross section of the laser sintered specimen could be 
investigated under the light microscope. Images of the analyzed cross sections can be found in Figure 4 (left). 
Furthermore, a SEM image of the glass-filled particle cross-section is depicted in Figure 4 (right). 
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Figure 4: Cross-section of laser sintered specimen made from PA11-glass fiber composite (left). SEM image of 
PA11-glass fiber composite particle cross sections (right).  

The investigated cross sections show, that the glass fibers are distributed homogeneously throughout the 
part. No segregation effects or one-direction fiber orientation can be detected, which is important for isotropic 
part properties. In addition, the part exhibits a dense structure, which means that the powder composite offers a 
high packing density and proper flowability. The black spots in Figure 4 (left) result from sample preparation as 
some of the fibers fall out during grinding. The inspection of the particle cross sections supports the observation 
made by SEM imaging of the particles, as glass fiber fragments and glass fibers can be identified in the polymer 
particle matrix. 

Conclusions 

In this study, we could show a one-pot approach to manufacture a PA11-glass fiber composite powder 
based on a TIPS process, where small fiber fragments are incorporated into the polymer particle and larger 
fibers are coated with the polymer. Furthermore, via TGA we could show, that it is possible to tailor the glass 
fiber concentration by simply adding the desired amount during the initial TIPS process. Even though the 
powder was washed and sieved, the measured amount of glass in the composite powder agreed perfectly with 
the desired amount of 25 vol.%. With a mean particle size 65.4 μm, the manufactured composite powder was in 
the typical size range for SLS materials, even though the size distribution was not optimized by narrowing via 
sieving and classification. The DSC analysis showed, that the fiber material does not influence the 
crystallization and that the composite powder displays a sintering window of 18 °C. Following the powder 
characterization, processing parameters for laser sintering in the desktop SLS device could be identified, 
whereby the basic SLS processability of our composite powder could be proven. Though the laser sintering 
parameters are not optimized yet, a clear strengthening effect of the glass fiber material could be observed for 
the absolute mechanical properties of the parts. Via light microscopy on cross sections of laser sintered 
specimens, homogeneous distribution and good adhesion could be shown. For future studies, a thorough 
comparison between glass-filled PA11 and dry-blended PA11 particle glass fiber mixtures is envisioned, where 
parts manufactured with optimized sintering parameters in industrial SLS machines are investigated to assess 
the differences between dry blends and composites. 
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